Standard gear drives out of the modular system for small and medium volume production

Planetary Gears IMS.**baseline**

• Ø 22 to 120 mm • 0.2 to 300 Nm • Plastic and metal-low-noise

The Driving Force. Worldwide.

Catalogue of Standard PLG options

Page

2

3

4

5

6

8

9

10

11

12 13

14 15

16 17

18 19

20

21

"If you understand geometry you will understand everything in this world."

Galileo Galilei

and what you'll find in it

Basic Information IMS Gear Group **IMS Gear Planetary Gears** Possible fields of application IMS.**baseline** Our planetary gear units

Our type series

plastic (PK) and metal-low-noise (PM LN)

ø 22 mm	РК	0.2 – 0.6 Nm
ø 22 mm	PM	0.6 – 0.8 Nm
ø 32 mm	РК	0.4 – 2.0 Nm
ø 32 mm	PM LN	0.8 – 4.5 Nm
ø 42 mm	РК	0.8 – 4.0 Nm
ø 42 mm	PM LN	3.0 – 15.0 Nm
ø 52 mm	РК	2.0 – 10.0 Nm
ø 52 mm	PM LN	4.0 – 25.0 Nm
ø 62 mm	PM LN	8.0 – 50.0 Nm
ø 72 mm	PM LN	14.0 – 84.0 Nm
ø 81 mm	PM LN	20.0 – 120.0 Nm
ø 105 mm	PM LN	35.0 – 195.0 Nm
ø 120 mm	PM	50.0 – 300.0 Nm

Our international locations

Donaueschingen, Germany

Gainesville, USA Eisenbach, Germany

Virginia Beach, USA

Querétaro, Mexico

Taicang, China

IMS Gear Group –

focusing on the future

The sales markets and their structures have changed dramatically over the past few years. Topics such as globalization, pressure on costs and wages, but also substantial changes in the product requirements for new sales markets had to be addressed by enterprises. As early as 1993, IMS Gear has taken the first step toward a fundamental realignment and has meanwhile evolved into a worldwide leading provider in gear engineering. What does all this mean for you as our customer?

Activities of the IMS Gear Group:

- Automotive
- Standard Planetary Gears
- IMS KOEPFER Cutting Tools

IMS Gear Planetary Gears –

Concentration on standard planetary gears

By concentrating our capabilities on a few selected fields of competence such as "Planetary Gears", we are now in a position to bundle the IMS Gear competencies for the highly specific and profound further development of our standard planetary gears. By focusing we can adapt these competences to the fast changing requirements of our customers and markets. This speeds up the pace of development of products, but also of process innovations. This is our way of avoiding the latent risk of remaining "average" by diversifying the product line-up in many fields of technology.

Design of Experience

By firmly focusing on standard planetary gears, the concept of "design of experience" is given a new dimension. Experiences gathered from customer applications and production processes can so be used extensively for advanced developments. For you, our customer, this not only means the certainty of always having the latest in product technology, but also the assurance that these products are made with innovative process technology at an excellent price-performance ratio.

Our vast expertise Beside our clear focus and the profound treatment of just a few selected fields of competence, there is also another

one activity of the IMS Gear Group

essential factor which distinguishes the IMS Gear Group from other competitors – our manufacturing penetration. This ranges from software development for special gearings via milling operations by IMS KOEPFER Cutting Tools, an ultramodern noise laboratory, metal and plastic injection molding, the new and highly efficient hardening shop, right through to the construction and building of the necessary assembly plants. You, our customer, benefits from highly flexible responses to changes in technical and logistical requirements, a favorable price level guaranteed by far-reaching independence from external suppliers, and by us accepting the full chain of responsibility from the first consulting meetings to the volume deliveries.

Possible fields of application

for planetary gear drives of IMS.baseline

Always the optimum

Small-, medium- or high volume series

IMS.**baseline** and IMS.**techline** gives you the freedom to use your imagination. Both lines are based on the modular system and allow the best economical and technical planetary gear solutions.

Sun protection

Materials handling

Conveyor belt

Medical technology

Machine building industry

Terminal end pressing

Power tools

Miscellaneous

Advertising column adjustment

IMS.**baseline**

- Selected standard gear drives from the modular system
- For small- and medium-sized series • as well as for samples
- Fast delivery
- High variety with regards to the diameters, materials, ratios
- Utilization of high volume series know-how for development and production

Nonstandard options of IMS.baseline

Do you need special adaptation for planetary gear drives out of the IMS.baseline? No problem, we can provide you with the following:

- Motor flange
- Motor pinion
- Output flange
- Output shaft
- Bearing mounted input shaft

Feel free to contact us - we are here to help.

4

IMS.techline

- Over more than 10,000 configuration possibilities in metal and/or plastic
- For high volume series
- QM-service in equivalent with Automotive Standards
- Customized injection molded input and output flanges
- Development support with regards to • technique and "supply chain arrangements"

Our planetary gear units

and what you should know about them

Mode of function

As the name says: planetary gears (PLGs) function like planets. The sun wheel in the center is driven by the motor, transferring its movement to three circumferential planetary gear wheels which form a stage. They are arranged on the axles of a planetary carrier. The last planetary carrier is integral to the drive shaft and so assures the power transmission to the output. The planetary gears are running within the gear housing, which is called the outer ring gear.

Properties

Input and output are arranged coaxially. The shafts turn in the same direction. PLGs are suitable for cw and ccw rotation, alternating, continuous and intermittent operation and have an extremely high degree of efficiency. Compared with other gear designs, the compactness of PLGs offers high performance density and high torque transmission in the smallest of spaces.

Backlash

The backlash at the output side is increasing based on adding the tolerances from the 1st to the 3rd stage. The maximum backlash has to be mentioned.

Ball bearing

Limited through assembly conditions; the installation of the ball bearings in the output flange is designed for a fixed bearing compared to the loose bearing on the output shaft. Per your requirement a different design can be conducted.

Connecting flange

This is where the PLG's flexibility really shows. The planetary gear drives of IMS Gear can be adapted to any (!) motor, with individual options on the input and output side. Contact us with your specific requirements.

Delivery

IMS Gear Planetary Gears delivers units fully assembled and tested with the motor of your choice, or individually with motor pinion for assembly at your premises. We'd be pleased to assist you in selecting the motor.

Efficiency

The gearing efficiency takes account

of the rolling motion of the toothed gear, whereas the gear efficiency accounts for all the losses of the entire bearing. This is why we always specify the gear efficiency which is necessarily lower than the gearing efficiency. As there are no standardized measurement methods, particular attention is called for when comparing the efficiency specified by different manufacturers.

Gear backlash

Gear backlash depends on a large number of factors: type of load, number of stages, bearing, design or material combination. When comparing different manufacturers, please note that there are also no standardized measurement methods. The values specified in this catalogue were measured with no load and with blocked input drive.

Heat treatment

The structural transformation taking place when hardening the individual metal components has a positive effect on the strength and the wear resistance of the gear. IMS Gear has its own heat treatment facility. Since we also have the entire metal machining activity in-house, we are free to choose from a variety of different heat-treatable steel grades.

Installation position

Due to grease lubrication and the various types of seals, the planetary gear drives of IMS Gear can be installed in any desired position.

Low-noise gears

Achieving the optimum acoustic performance makes higher demands in terms of true running and axial runout of the motor bearing plate, flange and shaft. The helical gearing causes axial forces to act on the motor shaft bearing. Adequate dimensioning of the motor shaft bearing must therefore be guaranteed. To counter the grease-conveying effect of the helical gearing, radial shaft O-rings or sealed motor bearings are the first choice.

Lubrication

Our PLGs are lubricated with grease and therefore maintenance-free during their useful service life. Depending on requirements, we select the best possible lubricant from a choice of ten different options.

Mounting position of gear drive

If the output shaft faces vertical additional sealing methods can be implemented per your requirement.

Operating dynamics

High operational dynamics is achieved with low moments of inertia, ease of running and low wear and tear. Wherever it makes sense, IMS Gear Planetary Gears uses plastic instead of metal for the planetary gears and arranges these in a well-balanced 120° angle array which, in turn, results in low moments of inertia. We achieve ease of running with highgrade needle bearings or favorable friction values between metal and plastic, low wear through a special gearing design for optimum rotational performance and by using plastic wheels. The typical IMS Gear material mix guarantees excellent operational dynamics (q.v. ball bearing).

Operating factor CB

The mentioned operating factor CB=1.0 in the catalogue relates to constant direction of rotation, no shock load and a daily operating time of 3 hours.

Operating temperature

The operation temperature range is exceeded, e.g. when the motor runs depends on material selection and choice of lubricant. The temperature range of our whereas the overload torque can be as

The details given herein are recommended values. Minor variances due to reduction ratios or non-standard testing or measuring methods etc. may occur. Please refer to pages 6 and 7 of this catalogue for basic or additional information, or contact us directly. Technical details subject to change without notice.

Planetary gears

- 1 Motor pinion input side
- 2 Motor flange
- 3 Metal planet gears, Stage 1
- 4 Planet carrier, Stage 1
- 5 Outer ring gear
- 6 Metal planet gears and planet carrier, Stage 2
- 7 Metal planet gears, Stage 3
- 8 Output flange
- 9 Ball bearing
- (10) Output shaft

Low-noise variant

- 1 Motor pinion input side, helical toothing
- 3 Plastic planet gears, helical toothing
- 5 Outer ring gear, helical toothing

all metal versions with standard lubrication is between -30 und +140 °C, the plastic PK series between -15 and +65 °C.

Output shaft loads

Output torque

in inverse ratio.

Overload torque

As different manufacturers also use different measuring methods, a comparison is difficult and requires some attention. We'd be pleased to calculate the maximum axial and radial load including all parameters for your specific application. Certain design options also allow higher stress loads.

The most important factor when selecting a planetary gear drive is the output torque. The gear reduction reduces the relatively high motor speed to a lower output drive speed, which increases the output torque

The maximum overload torque (impact load) is defined as the brief moment in time during which the admissible output torque is exceeded, e.g. when the motor runs up. Peak load equals overload in plastic PLGs, whereas the overload torque can be as much as 1.5 times the peak load in metalplastic combinations or all metal versions.

Reduction ratios

Changing the number of teeth of the sun gear and the planet gears allows different reduction ratios per each stage. IMS Gear Planetary Gears combines the reductions in as many as three stages and so achieves a total of as many as 44 non-integer reduction ratios, allowing an enormous variety of different gear requirements to be realized.

Sealing modes

The protection categories are defined by DIN EN 60259. If requested, we also supply output and motor side seals which allow you to realize high protection categories.

Service Life

Depending on ambient conditions and the operational data of the drive system, the useful service life of a PLG is between 200 and 15.000 hours. With the variety of different options in applications and use, no generally valid statement can be given on the useful service life.

PK 22 (ø 22 mm, plastic)

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	0.2 Nm	0.4 Nm	0.6 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	1.50°	2.00°	2.50°
Recommended initial speed	6,000 rpm	6,000 rpm	6,000 rpm
Operating temperature	-15 °C to +65 °C	-15 °C to +65 °C	-15 °C to +65 °C
Output side with sintered metal bearing			
Max. load, radial (10 mm from flange)	15 N	30 N	45 N
Max. load, axial	30 N	30 N	30 N
Max. perm. fitting pressure	150 N	150 N	150 N
Gear drive length p	33.6 ± 0.5 mm	41.8 ± 0.5 mm	50.0 ± 0.5 mm
Weight approx.	33 g	42 a	50 a

Parameter	1-stage
i u unecci	Tstuge
Perm. output torque (Appl. factor $C_B = 1.0$)	0.6 Nm
Gear drive efficiency, approx.	0.90
Max. backlash in ° DEG	1.5°
Recommended initial speed	6,000 rpm
Operating temperature	-30 °C to +120
Output side with ball bearing (2Z)	
Max. load, radial (10 mm from flange)	25 N
Max. load, axial	10 N
Max. perm. fitting pressure	80 N
Gear drive length p	33.6 ± 0.3 mm
Weight approx	43 g

a	b	C	e	f	g	h
4.7 ^{-0.3} _	3	6.3	1.8	15.0	0.2	10
i	k	_				
10.0	3.0					

Motor flange

Dimensions of motor mounting/flange in mm						
a2	b2	c2	d2	e2	f2	g2
22	17	10 H8	2.2	15.3	3.2	4.8

Further flanges (e.g. NEMA) are available on request.

Dime	nsions of	planetary	/ gear d	rive in n	nm	
a3	b3	c3	d3	f3	g3	h3
22	10.3	14 h8	4 h7 _	2.0	4.5	14.5
j3 _	k3	13	_			
8	6	3.5				

1-stage	2-stage	3-stage	
4:1 (3.70)	14:1 (13.73)	51:1 (50.89) 130:1	(129.62
5:1 (5.18)	19:1 (19.20)	68:1 (68.06) 150:1	(149.90
7:1 (6.75)	25:1 (25.01)	79:1 (78.71) 169:1	(168.84
	29:1 (28.93)	93:1 (92.70) 195:1	(195.26
	35:1 (34.97)	100:1 (99.50) 236:1	(236.09
	46:1 (45.56)	115:1 (115.07) 308:1	(307.54

Dimensions of gear unit output/flange in mm				
a4	b4	c4		
22	19	M2x3.5		

Motor Motor pinion	Borehole depth Moto pinion for gearbox att
Motor flange	
Planetary gears Output	
Output flange	

Further flanges (e.g. NEMA) are available on request.

M2x3.5

19

22

PK 32	(ø	32	mm,	plastic)
-------	----	----	-----	----------

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	0.4 Nm	1.0 Nm	2.0 Nm
Gear drive efficiency, approx.	0.75	0.70	0.65
Max. backlash in ° DEG	1.90°	1.95°	2.00°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-15 °C to +65 °C	-15 °C to +65 °C	-15 °C to +65 °C
Output side with sintered metal bearing			
Max. load, radial	15 N	30 N	45 N
Max. load, axial	5 N	10 N	15 N
Max. perm. fitting pressure	150 N	150 N	150 N
	$36.0 \pm 0.5 \text{ mm}$	45.5 ± 0.5 mm	55.0 ± 0.5 mm
Gear drive length p	50.0 ± 0.5 mm		

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	0.75 Nm	2.25 Nm	4.50 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	1.50° (LN: 2.00°) ¹⁾	1.55°	1.60°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-30 °C to +120 °C	-30 °C to +120 °C	-30 °C to +120 °C
Output side with ball bearing (2Z)			
Max. load, radial	40 N	70 N	100 N
Max. load, axial	10 N	20 N	30 N
Max. perm. fitting pressure	120 N	120 N	120 N
Gear drive length p	32.3 ± 0.5 mm	42.0 ± 0.5 mm	51.5 ± 0.5 mm
Weight approx	160 g	210 g	260 g

Dimensions of motor mounting in mm								
a	b	C	e	f	g	h		
6.1 -0.4	3	6	M2	16.0	0.6	14		
j	k	_						
0 7	2.0							

Dimensions of motor mounting/flange in mm								
a2	b2	c2	d2	e2	f2	g2		
32 _	22	14 H7	3.2	13.0	3.0	3.0		
h2								
0.5								

Further flanges (e.g. NEMA) are available on request.

Dimensions of planetary gear drive in mm

netary gears Output			Ød3
Pla	b3 p	h3	

a3 ____ b3 ___ c3 ___ d3 ___ f3 ___ g3 ___ h3 _ 32 ____ 11 ____ 20 h10 6 g6 ___ 3.0 ____ 3.4 ____ 20 ___ **Reduction ratios i rounded**

1-stage	2-stage	3-stage							
4:1 (3.70)	14:1 (13.73)	51:1 (50.89) 130:1 (129.62	2)						
5:1 (5.18)	19:1 (19.20)	68:1 (68.06) 150:1 (149.90	J)						
7:1 (6.75)	25:1 (25.01)	79:1 (78.71) 169:1 (168.84	4)						
	29:1 (28.93)	93:1 (92.70) 195:1 (195.26	5)						
	35:1 (34.97)	100:1 (99.50) 236:1 (236.09))						
	46:1 (45.56)	115:1 (115.07) 308:1 (307.54	4)						

Dimensions of gear unit output/flange in mm					
a4	b4	c4			
32	26	M3x7			

Borehole depth

(ø 32 mm, metal-low-noise) PM 32 LN

			-			
a2 _	b2	c2	d2	e2	f2	g2
22	22	1/ 10	2.2	120	2.0	20

32

Øc4

Further flanges (e.g. NEMA) are available on request.

32	1						1
		1	20 h8_	6 g6 _	3.4	3.0	20
Redu	uction	ratios i	round	ed			
1-sta	ige	2-stage	e	3-stag	e		
4:1 (3.70)	14:1 (1	3.73)	51:1	(50.89)	130:1 (129.62
5:1 (5.18)	19:1 (1	9.20)	68:1	(68.06)	150:1 (149.90
7:1 (6.75)	25:1 (2	25.01)	79:1	(78.71)	169:1 (168.84
		29:1 (2	28.93)	93:1	(92.70)	195:1 (195.26
		35:1 (3	34.97)	100:1	(99.50)	236:1 (236.09
		46:1 (4	5.56)	115:1	(115.07)	308:1 (307.54

26

Further flanges (e.g. NEMA) are available on request.

M3x4

PK 42	(ø	42	mm,	plastic)
-------	----	----	-----	----------

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	0.8 Nm	2.0 Nm	4.0 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	1.70°	1.75°	1.80°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-15 °C to +65 °C	-15 °C to +65 °C	-15 °C to +65 °C
Output side with sintered metal bearing			
Max. load, radial	15 N	30 N	45 N
Max. load, axial	5 N	10 N	30 N
Max. perm. fitting pressure	150 N	150 N	150 N
Gear drive length p	60.2 ± 0.5 mm	73.2 ± 0.5 mm	86.2 ± 0.5 mm
5 1			

e2

25

g2

Parameter	1-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	3.0 Nm
Gear drive efficiency, approx.	0.80
Max. backlash in ° DEG	0.90° (LN: 1.3
Recommended initial speed	3,000 rpm
Operating temperature	-30 °C to +12
Output side with ball bearing (2RS)	
Max. load, radial	160 N
Max. load, axial	50 N
Max. perm. fitting pressure	320 N
Gear drive length p	60.2 ± 0.5 mi
Weight approx.	275 g

Øa2

Dimensions of motor mounting in mm								
a	b	c	d	e	f	g		
8 +0.3	7	_ 11 _	2	M4	27.5	0.2		
h	j	k	_					
22	14.5	2.5						

Dimensions of motor mounting/flange in mm

a2 ____ b2___ c2___ d2 ___ e2 ___ f2 ___ g2_

42 ____ 32 ___ 22 H7 __ 3.4 ___ 23.5 ___ 3.0 ____ 8.9 ___

a	0.2	CS	us	62	12	ys
12	21	25 h10	8 a6	3.0	2.0	3.0

p h3 tabuar value m3

Øa4 Øc4 Øe4 Ød4 Øb4

Dimensions of planetary gear drive in mm b3 c3 d3 e3 f3 a3 a3 h3 m3 ____ n3

Further flanges (e.g. NEMA) are available on request.

1-stage	2-stage	3-stage			
1-stage	z-stage	J-stage			
4:1 (3.70)	14:1 (13.73)	51:1 (5	50.89)	130:1	(129.62)
5:1 (5.18)	19:1 (19.20)	68:1 (6	68.06)	150:1	(149.90)
7:1 (6.75)	25:1 (25.01)	7 9:1 (7	78.71)	169:1	(168.84)
	29:1 (28.93)	93:1 (9	92.70)	195:1	(195.26)
	35:1 (34.97)	100:1 (9	9.50)	236:1	(236.09)
	46:1 (45.56)	115:1 (11	5.07)	308:1	(307.54)

___ D M3 __ A3x3x16 ____

Dimen	sions of gea	ons of gear unit output/flange in mm				
a4	b4	c4	d4	e4		
42	36	M4x10	32	2.5 -0.1		

Output flange

Motor flange

(ø 42 mm, metal-low-noise) PM 42 LN

	2-stage	3-stage
	7.5 Nm	15.0 Nm
	0.75	0.70
N: 1.30°) ¹⁾	0.95°	1.00°
m	3,000 rpm	3,000 rpm
+120 °C	-30 °C to +120 °C	-30 °C to +120 °C
	230 N	300 N
	80 N	110 N
	320 N	320 N
.5 mm	73.25 ± 0.5 m	86.3 ± 0.5 mm

Thread e -4x90° (Shown offset 45°) for gearbox attachment

Dimensions of motor mounting/flange in mm						
a2	b2	c2	d2	e2	f2	g2
42	32	22 J7	3.4	23.5	3.0	10.8

Key, keyway DIN 6885 -

h3

Ød4

Øb4

tabular value n3

	Dimension	ns of planetary	/ gear dr	ive in mi	n	
3	a3 b	3 c3	d3	e3	f3	g3_
5	42 2	1 _ 25 h9_	8 g6	3.0	2.0	2.8
	25 D	M3 _ A3x3x1	6 ed			
l	1-stage	2-stage	3-stage	2		
222	4:1 (3.65)	14:1 (13.53)	67:1	(67.08)	166:1 (166.40
lar	5:1 (5.36)	19:1 (18.92)	81:1	(81.11)	192:1 (191.54
em3	7:1 (6.55)	25:1 (24.65)	91:1	(91.36)	232:1 (2	231.59
	9:1 (8.63)	28:1 (28.05)	101:1 (101.89)	302:1 (301.68

Dimen	Dimensions of gear unit output/flange in mm					
a4	b4	c4	d4	e4		
42	36	M4x10	32	M3x10		

45:1 (44.69) 128:1 (127.74)

58:1 (58.22) 145:1 (145.36)

Further flanges (e.g. NEMA) are available on request.

J

PK 52	(ø	52	mm,	plastic)
-------	----	----	-----	----------

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	2.0 Nm	5.0 Nm	10.0 Nm
Gear drive efficiency, approx.	0.75	0.70	0.65
Max. backlash in ° DEG	1.10°	1.15°	1.20°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-15 °C to +65 °C	-15 °C to +65 °C	-15 °C to +65 °C
Output side with ball bearing (2RS)			
Max. load, radial	200 N	320 N	450 N
Max. load, axial	60 N	100 N	150 N
Max. perm. fitting pressure	500 N	500 N	500 N
Gear drive length p	72.9 ± 0.5 mm	87.0 ± 0.5 mm	101.1 ± 0.5 mm

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	4.0 Nm	12.0 Nm	25.0 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	0.70° (LN: 1,10°) ¹⁾	0.75°	0.80°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-30 °C to +120 °C	-30 °C to +120 °C	-30 °C to +120 °C
Output side with ball bearing (2RS)			
Max. load, radial	200 N	320 N	450 N
Max. load, axial	60 N	100 N	150 N
Max. perm. fitting pressure	500 N	500 N	500 N
Gear drive length p	73.1 ± 0.5 mm	87.25 ± 0.5 mm	101.4 ± 0.5 mm
Weight approx. with motor flange C80	0.7 kg	0.9 kg	1.1 kg

)	Øa2	g2 <u>j2</u> <u>j2</u> <u>f2</u> <u>j2</u> <u>f2</u> <u>j2</u> <u>f2</u> <u>j2</u> <u>f2</u> <u>j2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f2</u> <u>f</u>
	A Øb2	e2

Dimon	tions of	motor m	ounting	/flange	in mm	
a2	b2	c2	d2	e2	f2	q2
80	65	50 H7	5.5	30.3	3.0	10.3
h2	j2					
38 H7	5.5					

Further flanges (e.g. NEMA) are available on request.

		Dimensio	ns of p	lanetary	gear d	rive in n	nm	
g3_	Key, keyway	a3 b	03	c3	d3	e3	f3	g3
f3	tabular value n3	52 1	7.8	32 h8_	12 h7	2.5	3.0	4.0
	e3	h3 n	n3	n3		_		
Øa3		25 C	D M4 _	A4x4x1	6			
	N N N N N N N N N N N N N N N N N N N	Reduction	n ratios	i round	ed			
	<u> </u>	1-stage	2-stag	ge	3-stag	e		
	Ctrg.	4:1 (3.70)	14:1 ((13.73)	51:1	(50.89)	130:1 ((129.62)
	DIN 332 -	5.1 (5.18)	19.1 ((19.20)	68:1	(68.06)	150:1 ((149.90)

tabular

value m3

neuluction	ratios i round	cu
1-stage	2-stage	3-stage
4:1 (3.70)	14:1 (13.73)	51:1 (50.89) 130:1 (129.62)
5:1 (5.18)	19:1 (19.20)	68:1 (68.06) 150:1 (149.90)
7:1 (6.75)	25:1 (25.01)	79:1 (78.71) 169:1 (168.84)
	29:1 (28.93)	93:1 (92.70) 195:1 (195.26)
	35:1 (34.97)	100:1 (99.50) 236:1 (236.09)
	46:1 (45.56)	115:1 (115.07) 308:1 (307.54)

Dimensions	of gear unit output	t/flange in mm
a4	b4	c4
52	40	M5x10

		Dimens	ions of	motor r	nountir	ng in mn	n	
	Bore out cross hole Ød	a	b	с	d	e	f	g
	for tension pin ISO 8752	8 +0.3	10	16	3	M4	34.0	0.3
	Motor							
		Dimens	ions of	motor r	nountir	ng/flang	e in mm	
			a2	b2	c2	d2	e2	f2
	Øa2	C 80	80	65	50	5.5	30.3	3.0
		C105	105	85	70	6.5	30.3	3.0
			g2	h2		j2	-	
The second second		C 80	10.3	38 H7_		5.5		
	A Øb2 g2 N		Furth	er flange	s (e.g. N	NEMA) are	e available	e on rec
	g_2 g_2 g_3 g_3 g_4 g_2 g_3 g_4 g_5 g_6 g_6 g_7 g_8	Dimens a3	Furth	er flange planeta ∫ c3	s (e.g. № ry gear ∣ d3	VEMA) are	e available mm ∣ f3	e on rec
	g_2 g_2 g_3	Dimens a3 52	Furth	er flange planeta c3 32 h8	s (e.g. N ry gear d3 3 12 h	VEMA) are drive in e3 17 2.5	mm f3	e on re 9
	g3 g3 f3 Key, keyway DIN 6885 - tabular value n3	Dimens a3 52 h3	<i>Furthe</i> ions of b3 17.8 m3	er flange planeta c3 32 h8 n3	s (e.g. N ry gear d3 5 12 h	drive in e 3 17 2.5	mm f3 3.0	e on re 9 4
	A Øb2 g2 g3	Dimens a3 52 h3 25	Further ions of b3 17.8 m3 D M4	er flange planeta c3 32 h8 n3 A3x3:	s (e.g. N ry gear d3 12 h x16	VEMA) are drive in e3 2.5	e available mm f3 3.0	e on ree 9 4
Intert	g3 g2 N N N N N N N N N N N N N	Dimens a3 52 h3 25 Reducti	Further ions of b3 17.8 m3 D M4	er flange planeta c3 32 h8 n3 A3x3	s (e.g. N ry gear d3_ 3_ 12 h x16	VEMA) are drive in e3 17 2.5	mm f3 3.0	e on re
Output	A	Dimens a3 52 h3 25 Reducti 1-stage	Furthering	er flange planeta c3 32 h8 n3 A3x33 os i rour age	s (e.g. N ry gear d3_ 12 h x16 ded 3-sta	drive in e3 17 2.5	e available mm f3 3.0 _	e on re 9 4
ndho	A Ob2	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6	Furtha ions of b3 17.8 m3 D M4 on ratio 2-sta 5) 14:1	er flange planeta 32 h8 n3 A3x3: os i rour age (13.53)	s (e.g. N ry gear d3_ 12 h x16 ided 3-sta) 67:	AEMA) are drive in are 2.5 2.5 age 1 (67.0	e available mm f3 3.0 8) 166:	e on re
	A Ob2	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3	Further ions of b3 17.8 m3 D M4 on ratio 2-str. 5) 14:1 6) 19:1	er flange planeta 32 h8 n3 A3x3: os i rour age (13.53) (18.92)	s (e.g. N ry gear d3 12 h x16 x16 3-sta 67: 81:	ALEMA) are drive in e3 17 2.5 2.5 age 1 (67.00 1 (81.1	e available mm f3 3.0 8) 166: 1) 192:	e on re g 4 1 (166 1 (191
ndno	A	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3 7:1 (6.5	Furthations of b317.8 m317.8 m310 M4 con ratio 2-sta 5) 14:1 6) 19:1 5) 25:1	er flange planeta 32 h8 n3 A3x33 os i rour age (13.53) (18.92) (24.65)	s (e.g. N ry gear d3_ 12 h x16 aded 3-sta 67: 81: 91:	AIEMA) are drive in e3 7 2.5 2.5 4 age 1 (67.0 1 (81.1 1 (91.3)	e available mm f3 3.0 8) 166: 1) 192: 6) 232:	e on re 9 4 1 (166 1 (191 1 (231
Output	A	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3 7:1 (6.5 9:1 (8.6	<i>Furthe</i> ions of b3 17.8 m3 D M4 on ratio 2-sta 5) 14:1 6) 19:1 5) 25:1 3) 28:1	er flange planeta c3 32 h8 n3 A3x3: A3x3: as i rour age (13.53) (18.92) (24.65) (28.05)	s (e.g. N ry gear d3_ 3_ 12 h x16 aded 3-sta 67: 9 81: 9 91: 9 101:	AEMA) are drive in e3 a7 2.5 2.5 4 age 1 (67.0 1 (81.1 1 (91.3 1 (101.8	e available mm f3 3.0 3.0 (1) 192: 6) 232: 9) 302:	e on re 9 4 1 (166 1 (191 1 (231 1 (301
Output	A B B B B B B B B B B B B B B B B B B B	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3 7:1 (6.5 9:1 (8.6	Furtholist ions of b3 17.8 m3 D M4 on ratio 2-st: 5) 14:1 6) 19:1 5) 25:1 3) 28:1 3) 28:1 34:1 44:1	er flange planeta c3 32 h8 n3 A3x3: os i rour age (13.53) (18.92) (24.65) (28.05) (33.92)	s (e.g. N ry gear d3_ 12 h x16 aded 3-sta 67: 81: 91: 101: 115: 115:	AEMA) are drive in age 1 (67.0 1 (81.1 1 (91.3 1 (101.8 1 (114.7	e available mm f3 3.0 8) 166: 1) 192: 6) 232: 9) 302: 7) 393:	g 9 4 1 (166 1 (191 1 (231 1 (301 1 (392
	g g g g g g g g g g g g g g	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3 7:1 (6.5 9:1 (8.6	Furthations of b317.8 m317.8 m310_M4 m310_M4 m310_M4 m311_111111111111111111111111111111	er flange planeta 32 h8 32 h8 A3x3: os i rour age (13.53) (18.92) (24.65) (28.05) (33.92) (44.69) (49.26)	s (e.g. N ry gear d3_ 12 h x16 aded 3-sta b 67: 0 81: 0 91: 0 101: 0 101: 0 128: 0	AEMA) are drive in e3 age 1 (67.0 1 (81.1 1 (91.3) 1 (101.8 1 (114.7 1 (127.7 1 (127.7	e available mm f3 3.0 3.0 (1) 192: 6) 232: 9) 302: 7) 393: 4) 6)	g 4 1 (166 1 (191 1 (231 1 (301 1 (392
Output	g2 g2 g2 g3 g3	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3 7:1 (6.5 9:1 (8.6	Furtholise ions of b3 17.8 m3 D M4 on ratio 2-str 5) 14:1 6) 19:1 5) 25:1 3) 28:1 34:1 45:1 58:1	er flange planeta 32 h8 n3 A3x3 os i rour age (13.53) (18.92) (24.65) (28.05) (33.92) (44.69) (58.22)	s (e.g. N ry gear d3_ 12 h x16 aded 3-sta b 67: 0 81: 0 91: 0 101: 0 115: 0 128: 0 145:	AEMA) are drive in e3 7 2.5 2.5 2.5 4 2.5 1 (67.0) 1 (81.1) 1 (91.3) 1 (101.8) 1 (114.7) 1 (127.7) 1 (145.3)	 <i>available</i> mm f3 3.0 <li< td=""><td>g 4 1 (166 1 (191 1 (231 1 (301 1 (392</td></li<>	g 4 1 (166 1 (191 1 (231 1 (301 1 (392
	A	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3 7:1 (6.5 9:1 (8.6	Furtholist ions of b3 17.8 m3 D M4 0n ratio 2-st. 5) 14:1 6) 19:1 5) 25:1 3) 28:1 34:1 45:1 58:1	er flange planeta 32 h8 32 h8 A3x3: A3x3: A3x3: (13.53) (13.53) (18.92) (24.65) (28.05) (33.92) (44.69) (58.22) Gear un	s (e.g. N ry gear d3_ 12 h x16 aded 3-sta 67: 91: 91: 101: 115: 128: 145: it outpo	AEMA) are drive in e3 7 2.5 2.5 4 2.5 1 (67.0 1 (81.1 1 (91.3) 1 (101.8 1 (101.8 1 (114.7) 1 (127.7) 1 (145.3) 4 4 4 4 4 4 4 4 4 4 5 4 4 4 5 4 5 4 5 5 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	e available mm f3 3.0 3.0 3.0 4) 6) 166: 192: 232: 9) 302: 7) 393: 4) 6) e in mm	g 4 1 (166 1 (191 1 (231 1 (301 1 (392
ouput	A B B B B B B B B B B B B B B B B B B B	Dimens a3 52 h3 25 Reducti 1-stage 4:1 (3.6 5:1 (5.3 7:1 (6.5 9:1 (8.6	Furtholist ions of b3 17.8 m3 D M4 on ratio 2-st: 5) 14:1 6) 19:1 5) 25:1 3) 28:1 34:1 45:1 58:1 ions of	er flange planeta c3 32 h8 n3 A3x3: os i rour age (13.53) (18.92) (24.65) (28.05) (33.92) (44.69) (58.22) gear un b4	s (e.g. N ry gear d3_ 12 h x16 aded 3-sta b 67: 0 81: 0 91: 0 101: 0 101: 0 128: 0 128: 0 145: 145: 145: 150:	AEMA) are drive in age 1 (67.0 1 (81.1 1 (91.3) 1 (101.8 1 (114.7 1 (127.7) 1 (145.3) ut/flange	e available mm f3 3.0 8) 166: 1) 192: 6) 232: 9) 302: 7) 393: 4) 6) e in mm c4	g 4 1 (166 1 (191 1 (231 1 (301 1 (392

Output flange

Planetary gears Output

b3

h3

р

(ø 52 mm, metal-low-noise) PM 52 LN

Further flanges (e.g. NEMA) are available on request. 15

PM 62 LN (ø 62 mm, metal-low-noise)

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	8 Nm	25 Nm	50 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	0.65° (LN: 0.95°) ¹⁾	0.70°	0.75°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-30 °C to +120 °C	-30 °C to +120 °C	-30 °C to +120 °C
Output side with ball bearing (2RS)			
Max. load, radial (10 mm from flange)	240 N	360 N	520 N
Max. load, axial	70 N	100 N	150 N
Max. perm. fitting pressure	1,000 N	1,000 N	1,000 N
Gear drive length p	73.2 ± 0.5 mm	90.1 ± 0.5 mm	106.9 ± 0.5 mm
Weight approx. with motor flange C80	0.8 kg	1.2 kg	1.6 kg

Parameter 1-stage 14 Nm Perm. output torque (Appl. factor $C_B = 1.0$) Gear drive efficiency, approx. 0.80 Max. backlash in ° DEG 0.60° (LN: 0.9 Recommended initial speed 3,000 rpm -30 °C to +12 Operating temperature Output side with ball bearing (2RS) Max. load, radial 320 N_ Max. load, axial 70 N . Max. perm. fitting pressure 1,300 N _ Gear drive length p 85.6 ± 0.5 mr Weight approx. with motor flange C80 1.4 kg ____

Planetary gears Output	B C C C C C C C C C C C C C C C C	Key, keyway g3 DIN 6885 - tabular value n3 e3 w w w ctrg. DIN 332 -
_	<u>b3</u> p	h3 tabular value m3

Dimens	ions of	motor	mounting	/flange	e in mm		
	a2	b2	c2	d2	e2	f2	g2_
C 80	80	65	50 H7	5.5 _	32.4 _	3.0	7.0_
C 90	90	75	60 H7	5.5 _	32.4 _	3.0	7.0_
C 105_	105_	85	70 H7	6.5	32.4 _	3.0	7.0_
C 120	120	100	80 H7	6.5	32.4	3.5	7.0

___ b ____ c ____ d ____ e ____ f ___

g

$\bigcirc \bigcirc$	Further flanges (e.g.	NEMA) ar	re available o	n request.
---------------------	-----------------------	----------	----------------	------------

Dime	nsions of	planetary	y gear dr	ive in r	nm	
a3	b3	c3	d3	e3	f3	g3
62	27.4	40 j7	14 h7	5.5	5.0	9.0
h3	m3	n3				
39	D M5	A5x5x1	8			

1-stage	2-stage	3-stage	
4:1 (3.65)	14:1 (13.53)	67:1 (67.08)	166:1 (166.40)
5:1 (5.36)	19:1 (18.92)	81:1 (81.11)	192:1 (191.54)
7:1 (6.55)	25:1 (24.65)	91:1 (91.36)	232:1 (231.59)
9:1 (8.63)	28:1 (28.05)	101:1 (101.89)	302:1 (301.68)
	34:1 (33.92)	115:1 (114.77)	393:1 (392.98)
	45:1 (44.69)	128:1 (127.74)	
	58:1 (58.22)	145:1 (145.36)	

Dimensions o	ensions of gear unit output/flange in mm		
a4	b4	c4	
62	52	M5x10	

Further flanges (e.g. NEMA) are available on request.

Bore out cross hole Ød for tension pin ISO 8752 C max. Borehole depth Motor Motor pinion Thread e -4x (Shown offset by 45°) for gearbox attachmen Moto Ħ Motor pinion Thrust ring Motor flang thickness g a Øa2 e2

¹⁾ For plastic PL wheels only! Impact of 1st stage for 2-3 stage versions is negligible.

Output flange

(ø 72 mm, metal-low-noise) PM 72 LN

	2-stage	3-stage
	42 Nm	84 Nm
	0.75	0.70
90°) ¹⁾	0.65°	0.70°
	3,000 rpm	3,000 rpm
20 °C	-30 °C to +120 °C	-30 °C to +120 °C
	480 N	760 N
	100 N	160 N
	1,300 N	1,300 N
m	105.2 ± 0.5 mm	124.7 ± 0.5 mm
	1.9 kg	2.4 kg

	Dimensions of motor mounting in mm						
1	a	b	с	d	e	f	g
	12.1 -0.3	14	19	3	M6		0.5
(90° ot by (45°)							

	a2	b2	c2	d2_	e2	f2_	g2
C 80_	80	65	50 H7	5.5_	34.3_	3.0	9.0
C 90_	90	75	60 H7	5.5_	34.3	3.0	9.0
C 105_	105	85	70 H7_	6.5_	34.3	3.0	9.0
C 120	120	100	80 H7	6.5	34.3	3.5	9.0

a3 _	b3	с3	d3	e3	f3	g3
72 _	28.8	45 j7	16 h7_	5.0	5.0	9.0
h3 _	m3	n3		-		
49	D M5	A5x5x	30			

	Reduction	ratios i round	led	
	1-stage	2-stage	3-stage	
332 -	4:1 (3.65)	14:1 (13.53)	67:1 (67.08)	166:1 (166.40)
lue m3	5:1 (5.36)	19:1 (18.92)	81:1 (81.11)	192:1 (191.54)
	7:1 (6.55)	25:1 (24.65)	91:1 (91.36)	232:1 (231.59)
	9:1 (8.63)	28:1 (28.05)	101:1 (101.89)	302:1 (301.68)
		34:1 (33.92)	115:1 (114.77)	393:1 (392.98)
		45:1 (44.69)	128:1 (127.74)	
		58:1 (58.22)	145:1 (145.36)	
	Dimensior	ns of gear unit	output/flange ir	n mm
	a4	b4	c	4
	72	60	N	/15x10

PM 81 LN (ø 81 mm, metal-low-noise)

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	20 Nm	60 Nm	120 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	0.50° (LN: 0.85°) ¹⁾	0.55°	0.60°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-30 °C to +120 °C	-30 °C to +120 °C	-30 °C to +120 °C
Output side with ball bearing (2RS)			
Max. load, radial	400 N	600 N	1,000 N
Max. load, axial	80 N	120 N	200 N
Max. perm. fitting pressure	1,500 N	1,500 N	1,500 N
Gear drive length p	95.1 ± 0.5 mm	116.8 ± 0.5 mm	138.4 ± 0.5 mm
	1.0	2.5.1.2	2.2 km

	A Øa2	e2 f2 c2 g2 c2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2
--	-------	---

А

Dimensions of motor mounting/flange in mm							
	a2	b2	c2	d2_	e2	f2	g2_
C 80	81	65	50 H7	5.5_	37.8_	3.0	7.0 _
C 90	90	75	60 H7	5.5_	37.8_	3.0	7.0 _
C 105_	105_	85	70 H7	6.5_	37.8_	3.0	7.0 _
C 120	120	100	80 H7	6.5	37.8	3.5	7.0

_____b ____ c ____d ___ e ____ f ____ g ___

$\neg \phi$	Further flanges ('en NI	FMA) are	availahle	on request
	runtiner nunges (c.g. 141	Living unc	available	on request.

Dime	nsions of	planetary	y gear dr	ive in r	nm	
a3	b3	c3	d3	e3	f3	g3
81	32.3	50 j7 _	19 h7	6.0	5.0	9.0
h3	m3	n3		-		
49	D M6	A6x6x2	28			

1-stage	2-stage	3-stage	
4:1 (3.65)	14:1 (13.53)	67:1 (67.08)	166:1 (166.40)
5:1 (5.36)	19:1 (18.92)	81:1 (81.11)	192:1 (191.54)
7:1 (6.55)	25:1 (24.65)	91:1 (91.36)	232:1 (231.59)
9:1 (8.63)	28:1 (28.05)	101:1 (101.89)	302:1 (301.68)
	34:1 (33.92)	115:1 (114.77)	393:1 (392.98)
	45:1 (44.69)	128:1 (127.74)	
	58:1 (58.22)	145:1 (145.36)	

Dimensions of gear unit output/flange in mm					
a4	b4	c4			
81	65	M6x12			

Further flanges (e.g. NEMA) are available on request.

¹⁾ For plastic PL wheels only! Impact of 1st stage for 2-3 stage versions is negligible.

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor C _B = 1.0)	35 Nm	105 Nm	195 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	0.55° (LN: 0.90°) ¹⁾	0.60°	0.65°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-30 °C to +120 °C	-30 °C to +120 °C	-30 °C to +120 °C
Output side with ball bearing (2RS) Max. load, radial	600 N	900 N	1,500 N
Max. load, axial	120 N	180 N	300 N
Max. perm. fitting pressure	2,000 N	2,000 N	2,000 N
Gear drive length p (motorsize 71)	117.2 ± 0.6 mm	148.3 ± 0.6 mm	179.3 ± 0.6 mm
Gear drive length p (motorsize 80)	127.2 ± 0.6 mm	158.3 ± 0.6 mm	189.3 ± 0.6 mm
Maight approximith mater flapse C00	1.4 kg	6 0 kg	7.6 kg

Motor flange

(ø 105 mm, metal-low-noise) PM 105 LN

Dimensi	ons or	motor n	nounun	g in mm		
a	b	C	d	e	f	g
18.3 ^{-0.3}	21	26	5	M10	60.0	0.5

	a2	b2	c2	d2_	e2	f2 _	g2_
C 105_	105_	85	70 H7	6.4_	46.4 _	3.0	15.0
C 120_	120_	100_	80 H7	6.4_	56.4	3.5	15.0
C 140_	140_	100_	95 H7	8.4_	46.4	3.5_	15.0
C 160_	160_	115_	110 H7	8.4	56.4	4.0	15.0

$ \bigcirc $	Further flanges (e.g.	NEMA) are	available or	ı request.

	a3	b3	c3	d3	e3
(motorsize 71)	105 _	40.9_	70 j7_	25 h7 _	5.0
(motorsize 80)	105 _	50.9	70 j7_	25 h7 _	5.0
	f3	g3	h3	m3	n3
(motorsize 71)	5.0	9.0	59	D M10_	A8x7x40
(motorsize 80)	5.0	9.0	59	D M10	A8x7x40

N	33	Z -
/a	lue	m3

1 stage	2 stage	2 stage	
I-stage	z-stage	5-stage	
4:1 (3.65)	14:1 (13.53)	67:1 (67.08)	166:1 (166.40)
5:1 (5.36)	19:1 (18.92)	81:1 (81.11)	192:1 (191.54)
7:1 (6.55)	25:1 (24.65)	91:1 (91.36)	232:1 (231.59)
9:1 (8.63)	28:1 (28.05)	101:1 (101.89)	302:1 (301.68)
	34:1 (33.92)	115:1 (114.77)	393:1 (392.98)
	45:1 (44.69)	128:1 (127.74)	
	58:1 (58.22)	145:1 (145.36)	
Dimension	ns of gear unit	output/flange in	n mm
a4	b4	C	4
105	85	N	/8x16

Further flanges (e.g. NEMA) are available on request. 19

PM 120 (ø 120 mm, metal)

Parameter	1-stage	2-stage	3-stage
Perm. output torque (Appl. factor $C_B = 1.0$)	50 Nm	150 Nm	300 Nm
Gear drive efficiency, approx.	0.80	0.75	0.70
Max. backlash in ° DEG	1.00°	1.50°	2.00°
Recommended initial speed	3,000 rpm	3,000 rpm	3,000 rpm
Operating temperature	-30 °C to +140 °C	-30 °C to +140 °C	-30 °C to +140 °C
Output side with ball bearing (2RS) Max. load, radial	600 N	900 N	1,500 N
Max. load, axial	120 N	180 N	300 N
Max. perm. fitting pressure	2,500 N	2,500 N	2,500 N
Gear drive length p (motorsize 71)	133.8 ± 0.6 mm	168.0 ± 0.6 mm	202.1 ± 0.6 mm
Gear drive length p (motorsize 81)	143.8 ± 0.6 mm	178.0 ± 0.6 mm	212.1 ± 0.6 mm
Weight approx	5.6 kg	8 0 kg	10.4 kg

Dimensions of motor mounting in mm							
a	b	c	d	е	f	g	
19.4 +0.2/-0.3	26	28	5	M10	70.0	0.5	

20

Dimensions of motor mounting/flange in mm a2 b2 c2 d2 e2 f2 g2 C 105 105 85 70 H7 6.6 53.6 3.0 15 C 120 120 100 80 H7 6.6 63.6 3.5 15 C 140 140 115 95 H7 9.0 53.6 3.5 15 C 160 160 130 110 H7 9.0 63.6 4.0 15

Further flanges (e.g. NEMA) are available on request.

Dimensions of planetary gear drive in mm a3 b3 c3 d3 e3 motorsize 71 120 44.2 80 j7 32 k6 4.0 motorsize 81 120 54.2 80 j7 32 k6 4.0 f3 g3 h3 m3 n3 motorsize 71 5.0 15.0 73.0 D M12 A10x8x50 motorsize 81 5.0 15.0 73.0 D M12 A10x8x50

1-stage	2-stage	3-stage
4:1 (3.70)	14:1 (13.73)	51:1 (50.89)
7:1 (6.75)	25:1 (25.01)	93:1 (92.70)
	46:1 (45.56)	169:1 (168.84)
		308:1 (307.54)

Dimensions of gear unit output/flange in mm						
a4	b4	c4				
120	100	M10x22				

Further flanges (e.g. NEMA) are available on request.

Our international sites and locations –

and how to contact us

IMS Gear Group IMS Gear GmbH Heinrich-Hertz-Strasse 16 78166 Donaueschingen

Donaueschingen, Germany

Germany

USA

IMS Gear

Virginia Beach, USA

China IMS Gear (Taicang) Co., Ltd. No. 166 Building 1, Renmin North Road Taicang Economic Development Area Taicang, Jiangsu, 215400 phone +86 512 5337 8525 fax +86 512 5337 8508 e-mail plg.cn@imsgear.com

Taicang, China

www.imsgear.com

IMS Gear GmbH

Planetary Gears Hauptstrasse 52 79871 Eisenbach phone +49 771 8507-282 fax +49 771 8507-220 e-mail plg.de@imsgear.com

Planetary Gears Inc. 440 Viking Drive, Suite 110 Virginia Beach, VA. 23452 phone +1 757 2275553 ext 401 fax +1 757 2275543 e-mail plg.us@imsgear.com

www.imsgear.com